

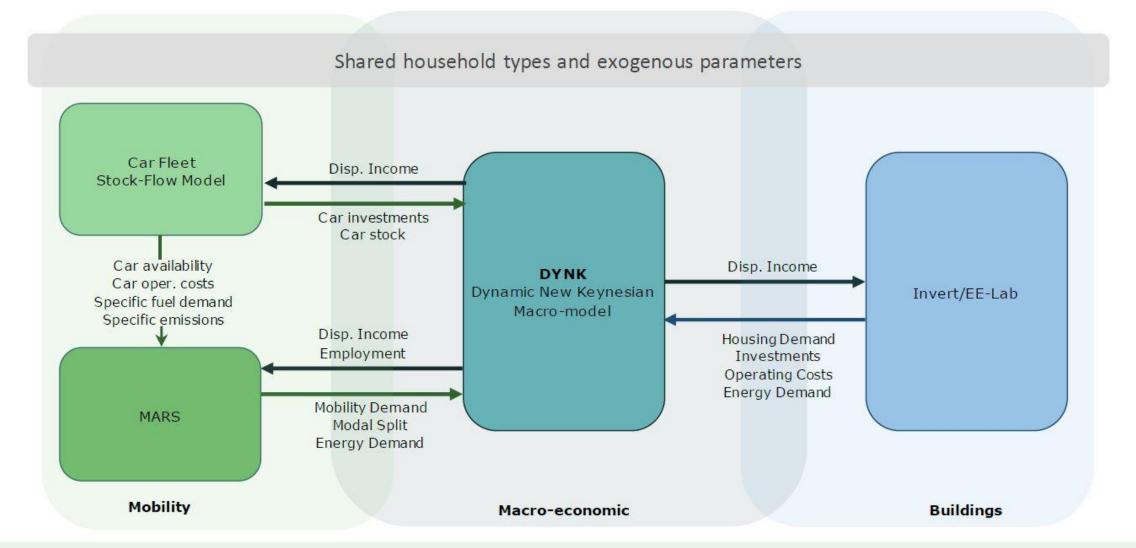
Expert:innen-Workshop Modellierung

WIFO, Großer Sitzungssaal

17.4.2023

Trans Fair-AT Programm

- ► 10:30 Einleitung (Claudia Kettner, WIFO) + Vorstellungsrunde
- ▶ 10:45 11:30 Präsentationen der Modelle insb. der Erweiterungen / Updates in TransFair-AT
 - ► Mobilität: MARS & SERAPIS (Paul Pfaffenbichler, BOKU)
 - ► Wohnen: INVERT/EE-Lab (Andreas Müller, e-think)
 - ► Volkswirtschaft: DYNK (Mark Sommer, WIFO)
- ► 10:30 11:45 Präsentation des Ansatzes für die Modellkopplung (Paul Pfaffenbichler, BOKU)
- ► 11:45 12:30 Diskussion
- Ausklang bei Brötchen



Trans Fair-AT Struktur der Modellierung

MOBILITÄT

Die Modelle MARS und SERAPIS

TransFair-AT Mobilität: Modelle MARS und SERAPIS

- MARS ist ein dynamisches, strategisches, integriertes Flächennutzungs- und Verkehrsmodell.
- ► **SERAPIS** ist ein dynamisches Flotten- und Antriebstechnologiewahlmodell.
- Beide Modelle sind auf System Dynamics basierende, maßnahmensensitive Simulationsmodelle.

MARS

- ▶ bildet wesentliche Rückkoppelungen zwischen Flächennutzung und Verkehr einerseits und innerhalb des Verkehrssystems andererseits ab und
- ▶ modelliert die Verkehrsnachfrage (Ziel- und Verkehrsmittel) der in Österreich wohnenden Personen >5 Jahre.

SERAPIS

modelliert die Wahl der Antriebstechnologie beim Neukauf von Pkws (batterieelektrisch, Plug-In Hybrid, konventionell) und die sich daraus ergebende Entwicklung der Zusammensetzung der Fahrzeugflotte.

Trans Fair-AT Mobilität: Modelle MARS und SERAPIS

Erweiterungen und Updates, welche im Rahmen des Projekts Transfair-AT umgesetzt wurden:

MARS

- Änderung des Basisjahrs von MARS von 2010 auf 2017
- Änderung der Verkehrszellen im Modell MARS auf die Bezirksgrenzen Stand 2017
- ▶ Abbildung der pandemiebedingten Effekte 2020-2022 (Lock-down, Homeoffice, Einstellung zu ÖV und aktiver Mobilität)
- Neukalibrierung MARS mit Daten der Zusatzerhebung zur Konsumerhebung 2019/20 der Statistik Austria

SERAPIS

- ▶ Überprüfung und Neukalibrierung SERAPIS Kfz-Bestand bis 2022
- ▶ Einpflegen EU Green Deal: ausschließlich Zero Emission Vehicles ab 2035

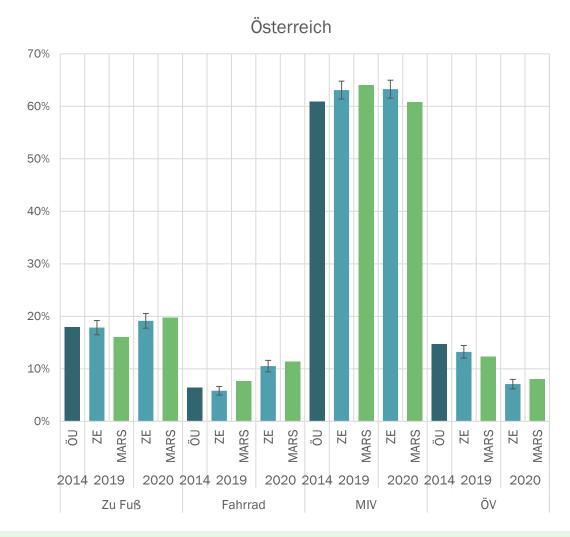
Transfair-AT Modell MARS: Neu-Kalibrierung und Plausibilisierung der Ergebnisse 2017-2022

- ▶ Die letzte österreichweite Mobilitätserhebung "Österreich unterwegs" liegt schon wieder rund 10 Jahre zurück.
- Daten einer im Rahmen der Konsumerhebung der Statistik Austria vom Institut für Verkehrswesen durchgeführten Mobilitäts- und Zeitnutzungserhebung sind für Transfair-AT nutzbar.
 - ▶ Stichprobe: 908 repräsentativ ausgewählte Personen ab 16 Jahre, die in Österreich wohnhaft sind

➤ Zwei ungefähr gleich große Wellen 18. September 2019 – 9. März 2020 (vor Lockdown) und 16. März 2020 – 8. August

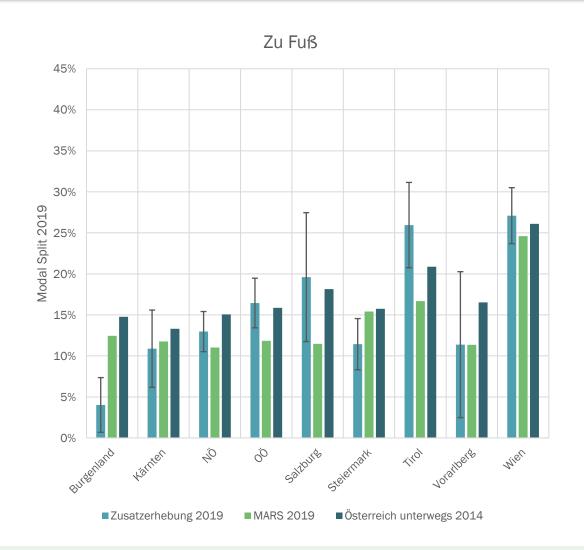
2020 (nach Lockdown).

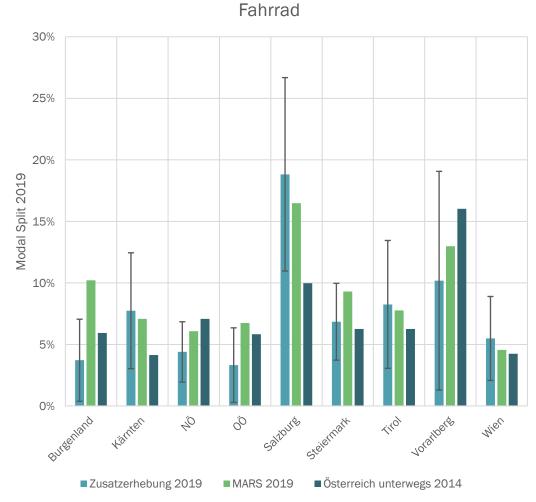
Dokumentation einer Woche in einem Wege- und Aktivitätentagebuch. Wohnorte der Teilnehmer*innen



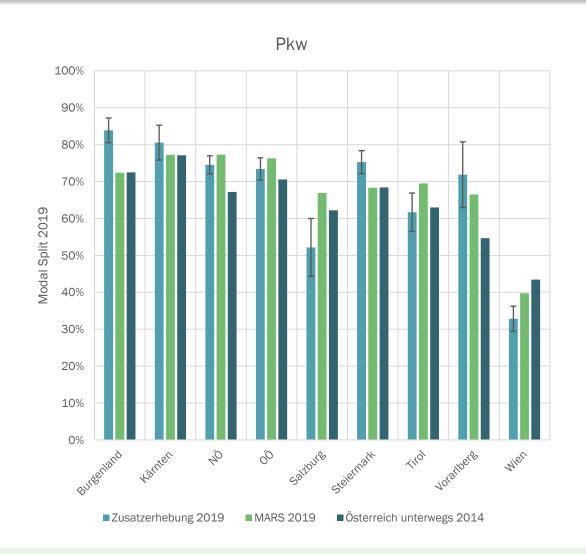
Ifans Fair-AT Modell MARS: Vergleich der Erhebungen und Modellrechnungen

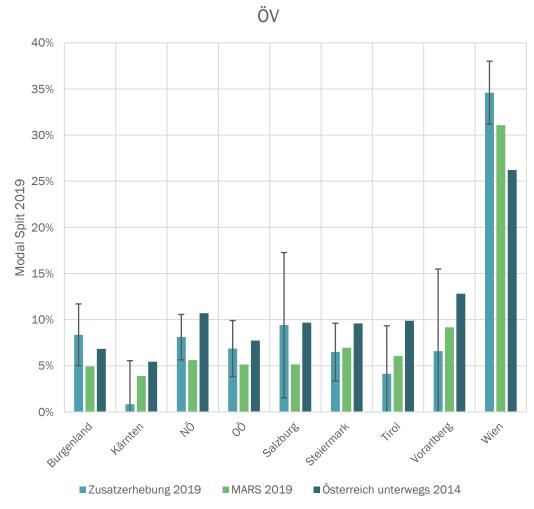
- Der gesamtösterreichische Modal Split auf Wegebasis der Erhebung "Österreich unterwegs" (ÖU) und der Zusatzerhebung 2019 (ZE) stimmt gut überein.
- Die Ergebnisse der Simulation mit dem Modell MARS liegt innerhalb des Konfidenzintervalls der Stichprobe.
- Der Einfluss des Lockdowns und der anderen Maßnahmen (z.B. Maskenpflicht im ÖV) wird von der Simulation gut abgebildet.



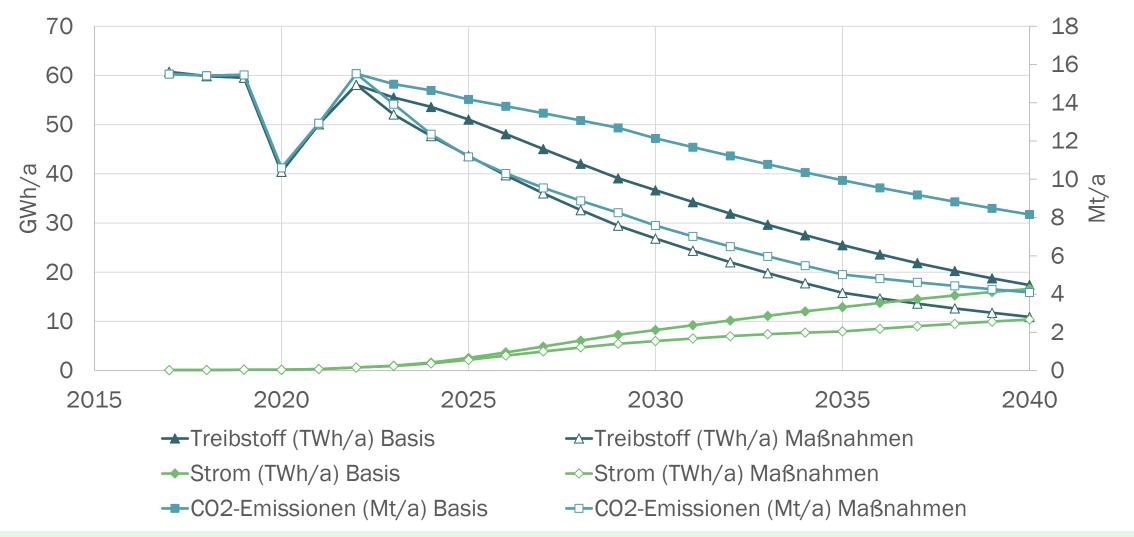


Trans Fair-AT Modell MARS: Vergleich der Erhebungen und Modellrechnungen - Bundesländer

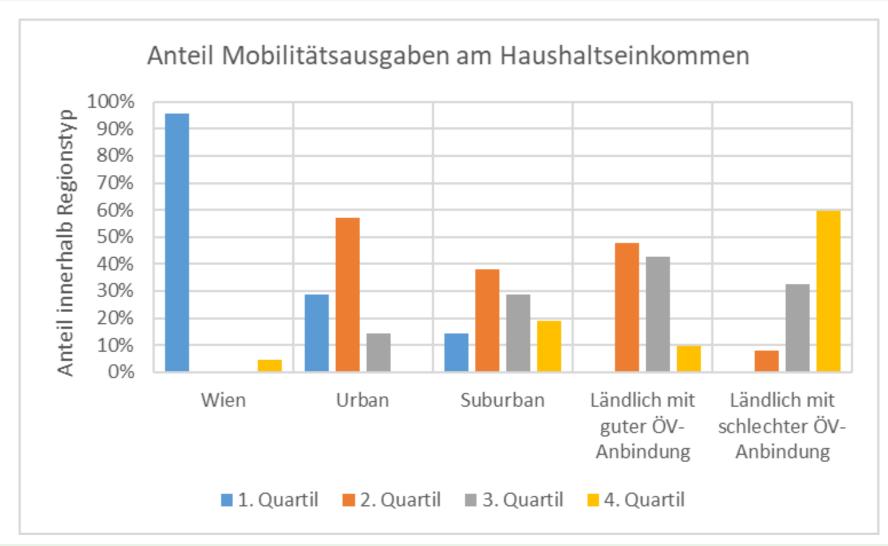




Trans Fair-AT Modell MARS: Vergleich der Erhebungen und Modellrechnungen - Bundesländer



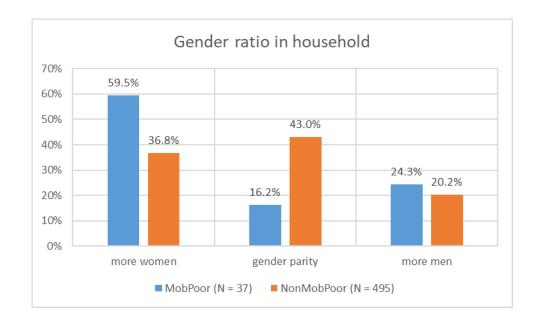
TransFair-AT Modellsystem MARS & SERAPIS - erste Ergebnisse: Energieverbrauch, CO₂-Emissionen



Trans Fair-AT Modellsystem MARS & SERAPIS - erste Ergebnisse: Mobilitätsausgaben

Quelle: Simulation

Modell MARS



Transfair-AT Mobilitätsarme Haushalte: Auswertung der Zusatzerhebung

► Mobilitätsarme Haushalte sind/haben:

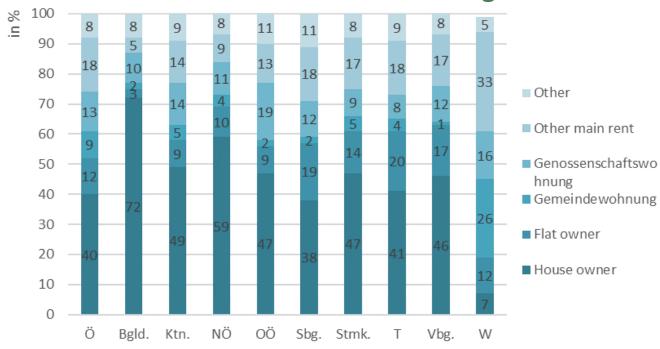
- ► kleiner (1,4 zu 2,3 Personen, t-test p = 0,00)
- weniger Kinder (0,14 zu 0.41, t-test p = 0,00)
- eher weiblich (Chi² Test p = 0,00)
- weniger gebildet (Chi² Test p = 0,04)
- weniger erwerbstätig (43% zu 62%, t-test p = 0,00)
- ► signifikant abhängiger vom Pkw (MANOVA p = 0,03)
- seltener ÖV-Nutzer:innen (MANOVA p = 0,03)
- ► längere Freizeitwege (33 zu 15 km, ANOVA p = 0,03)
- eher Mietwohnungen (74% zu 41%, Chi² Test p = 0,00)

GEBÄUDE

Das Modell Invert/EE-Lab

TransFair-AT Gebäudebestandsmodell Invert/EE-Lab

- ► Invert Modell ist ein Gebäudebestandsmodell, das
 - ▶ Energiebedarf und Endenergieeinsatz auf Basis von technischen Zusammenhängen und
 - ► Renovierungs- sowie Kesseltauschaktivitäten auf Basis von techno-ökonomischen Bedingungen Model-intern berechnet.
- ► Der Entscheidungsalgorithmus des Invert/EE-Lab Modells ist eine (Nested-)Logit Simulations-Ansatz; mit dem Modell können maßnahmensensitive Szenarien erstellt werden.
- ▶ Die Gebäudedatenbank des Modell bildet den österreichischen Gebäudebestand mittels Gebäudekohorten ab. Es sind sowohl Wohngebäude als auch Gebäude des DL-Sektors erfasst. Im Rahmen des Projektes werden lediglich die Wohngebäude ausgewertet.

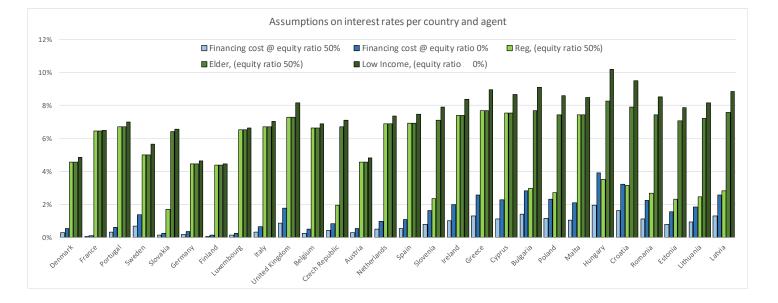


Trans Fair-AT Gebäudebestandsmodell Invert/EE-Lab: Änderungen im Rahmen des Proojektes

- Aktualisierung der regionalisierten Gebäudebestandsdatenbank
 - ► In vergangenen Projekten (letzten 2 Daten-updates) wurden mit einem Österreich-Datensatz gearbeitet

Besitzverhältnisse in österreichischen Wohngebäuden

Source: Eigene Darstellung auf Basis von Statistik Austria, 2021


Trans Fair-AT Gebäudebestandsmodell Invert/EE-Lab: Änderungen im Rahmen des Proojektes

► Implizite Diskontrate steigt mit dem Verhältnis der Investitionssumme zu verfügbaren Haushaltseinkommen

Explicitly addressed and not part of the Invert/EE-Lab discount rate Covered by the Invert/EE-Lab discount rate Underlying factors Diskontrate **Preferences** Time preferences Risk preferences Reference-dependen preferences Pro-environmental preferences Implizite (ir)rational behavior Bounded rationality Rational inattention Behavioral biases **External barriers** to energy efficiency Split incentives Lack of information transaction costs Lack of capital Technological risk Financial risk

► In Vorgängerprojekten (BRISKEE, CHEETAH) wurden die Diskontraten mittels Surveys für verschiedene Haushaltsgruppen abgefragt/berechnet: => Es ergaben sich keine großen

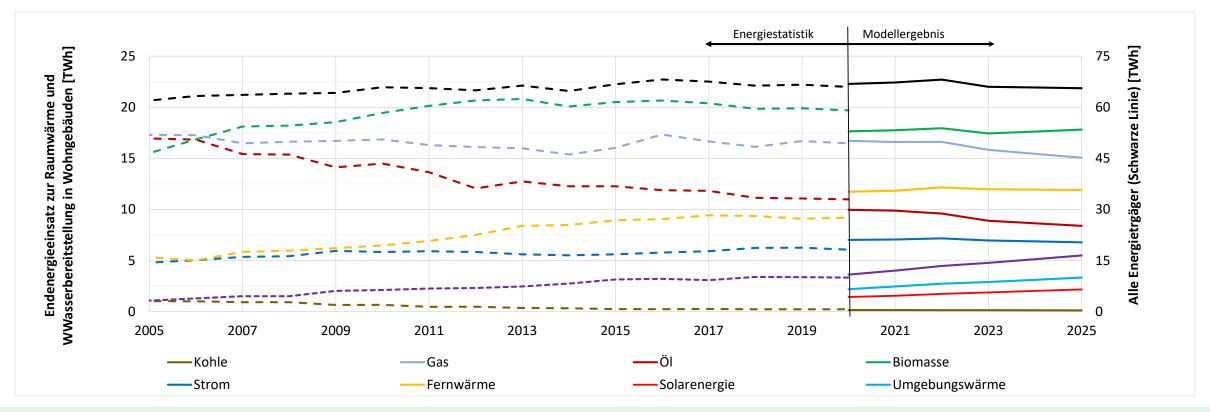
Unterschiede

Trans Fair-AT Gebäudebestandsmodell Invert/EE-Lab: Änderungen im Rahmen des Projektes

- ► Schnittstelle mit DYNK-Modell
 - ► Haushaltsgruppen-spezifische Auswertungen

Transfair-AT Gebäudebestandsmodell Invert/EE-Lab: Modellkalibrierung

- Das Modell ist in der Lage, den historischen Trend in einem Business-as-usual Szenario weiterzuführen
 - ► Muss dazu aber kalibriert werden / wurde aber dazu kaliribiert

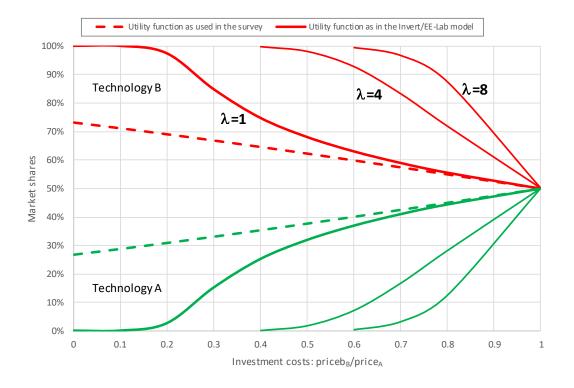


Trans Fair-AT Gebäudebestandsmodell Invert/EE-Lab

- ► Vergleich historische Entwicklung (bis 2020) und Modellfortschreibung (2020 2025)
 - ► Datenabweichungen bei Biomasse und Fernwärme

Transfair-AT Gebäudebestandsmodell Invert/EE-Lab: Modellkalibrierung

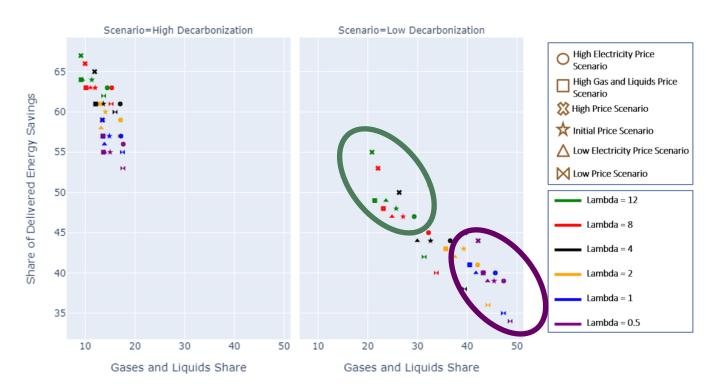
- ► Modelltiefe ist um Vielfaches tiefer als die verfügbaren Daten, daher viele Freiheitsgrade der Datenkalibrierung
- Insbesondere fehlen detaillierte Energiedaten für unterschiedlich vulnerable Haushaltsgruppen (insbesondere mit Fokus auf verfügbares Einkommen), aus Surveys abgeleitete unterschiedliche Entscheidungspräferenzen zeigen (grundsätzlich) eine zu schwache Sensitivität



Trans Fair-AT Gebäudebestandsmodell Invert/EE-Lab: Modellkalibrierung

► Kalibrierung der Selektivität der Entscheidung

Source: Müller et al., Working paper on energy demand projections for buildings, Deliverable D7.2 within the Project CHEETAH, 2019



TransFair-AT Gebäudebestandsmodell Invert/EE-Lab: Modellkalibrierung

Kalibrierung der Selektivität der Entscheidung

Hohe Selektivität (Optimierungsmodell)

Standard Selektivitätskalibrierung Invert/EE-Lab

Geringe Selektivität (Surveys)

Source: Oezer et al., Building-Stock Model Based Scenarios Under Different Price Signals, 31st Young Energy Economists and Engineers Seminar (YEEES), 2023

TransFair-AT Gebäudebestandsmodell Invert/EE-Lab: Modellkalibrierung

- ▶ Das Modell ist in der Lage, den historischen Trend in einem Business-as-usual Szenario weiterzuführen
 - ► Muss dazu aber kalibriert werden / wurde aber dazu kalibriert
- ► Modelltiefe ist um Vielfaches tiefer als die verfügbaren Daten, daher viele Freiheitsgrade der Datenkalibrierung
- Insbesondere fehlen detaillierte Energiedaten für unterschiedlich vulnerable Haushaltsgruppen (insbesondere mit Fokus auf verfügbares Einkommen), aus Surveys abgeleitete unterschiedliche Entscheidungspräferenzen zeigen (grundsätzlich) eine zu schwache Sensitivität

Ifans Fair-AT Gebäudebestandsmodell Invert/EE-Lab: Was kann das Modell liefern

- ► Konsistenter Energiebedarf, Endenergieeinsatz und CO2-Emissionen
- Konsistente laufende Ausgaben und Investitionsbedarf
- Gute Indikation der Entwicklung nach Regionen
 - ▶ ohne Berücksichtigung von länderspezifischen Vorgaben und Förderprogramme
- ► Indikation der Entwicklung des Gebäudebestandes für unterschiedliche Einkommensgruppen
 - ▶ Wenig quantitative Daten zum Kalibrieren verfügbar, Modell(kalibrierung) tendiert die Auswirkungen zu unterschätzen
 - ▶ Änderungen in der Modellierung der impliziten Diskontrate kann helfen, Kalibrierungsdaten fehlen
- Den wichtigsten Mehrwert für die Fragestellung bringt wahrscheinlich die Kopplung mit dem Makro-Haushaltsmodell DYNK
 - Explizite Differenzierung der Transferleistungen: Wer zahlt ein, wer bekommt raus.

MAKRO-ÖKONOMIE

Das Modell DYNK

Charakteristika

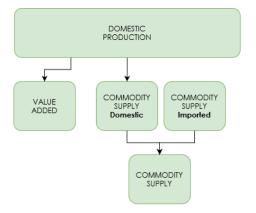
- Makroökonomisches Modell
- ► 1-Region & ~70 Sektoren/Güter
- Monetäre Verbindungen von und zwischen Produktion, Dienstleistungen und Konsum
- Ökonometrisch geschätzte Gleichungen von
 Produzenten- und Konsumentenreaktion auf Preise
- Ausgelegt auf Interfaces für Bottom-up Modelle
- Direkte Ableitung von Endenergienachfrage & energiebezogene CO₂ Emissionen
- ► Lösungsprozess: Iterativ-rekursiv, jährliches Gleichgewicht am Gütermarkt

Anwendungen

- Szenario-analysen :
 - Energie- & CO₂-Szenarien
 - ► CO₂ Steuer
- Impact-Analyse
 - Technologischer Wandel (Stromerzeugung, Recycling)
 - Investitionseffekte
- Andere
 - Z.b. Beschäftigungsprognose

Neuerungen

- Update der Kerndaten (ohne Schätzungen) auf 2018
- Flexibilisierung Haushalts-Gruppen
- Subventionsraten i.B.v. Sanierung und Heizssystemen



Gütermarkt

- ► **IO-Tabelle** (74+2 Sektoren/Güter)
 - Aufkommen & Verwendung
 - Sektorale
 - Produktion
 - Importe
 - Wertschöpfung
 - Investitionen
 - Beschäftigung

Information Flow

Monetary Flow

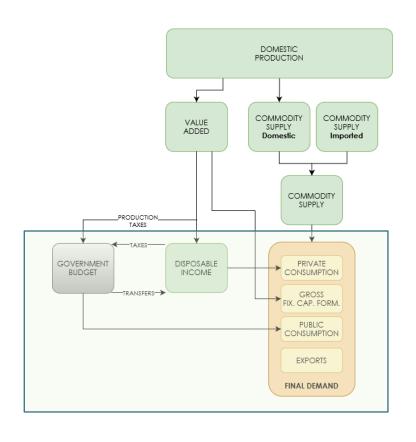
▶ Gütermarkt

Endnachfrage

Privater Konsum

- Verfügbares Einkommen
- Konsumneigung

▶ Öffentlicher Konsum


- Steuereinnahmen (optional)
- Öff. Schuldenpfad (optional)

Exporte

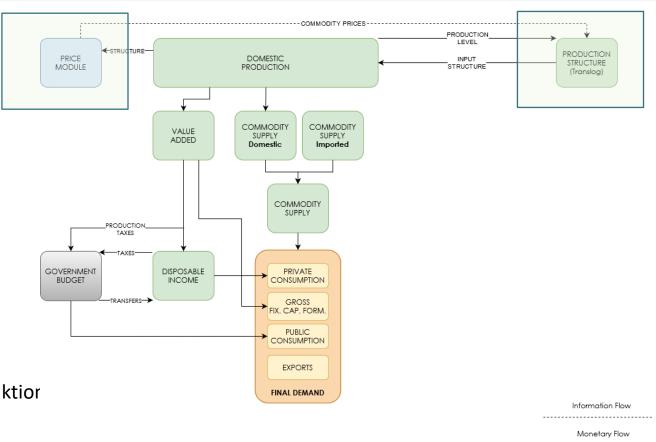
Exogen

Investitionen

Betriebsüberschüsse vorangegangener Jahre

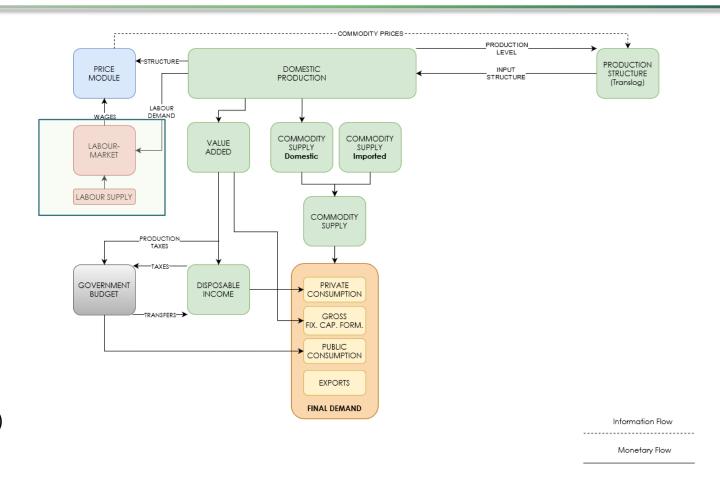
Information Flow

Monetary Flow

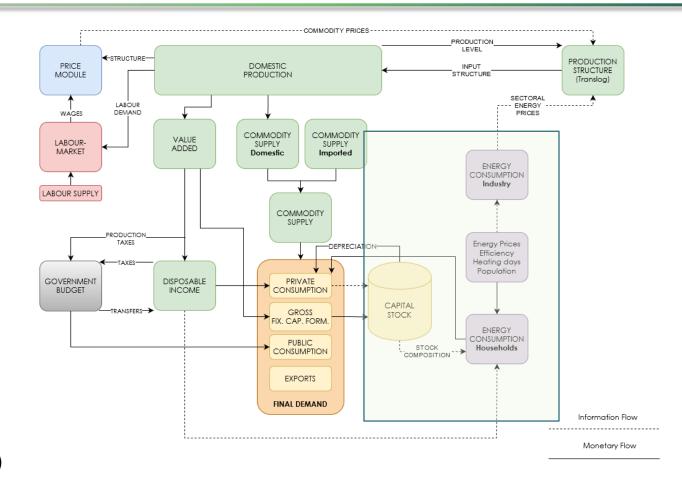


Trans Fair-AT DYNK Modell - Preissystem

- Gütermarkt
- Endnachfrage
- Preissystem
 - **▶** Güterspezifische Preise
 - Preis Index (Stückkosten)
 - Basisjahr = 1
 - Gewichtete Summe der Inputpreise
 - Relative Faktorkosten beeinflussen Produktior
 - 5-Faktor Translog-System "KLEMD"
 - ► Eigen- und Kreuzpreiselastizitäten
 - ► Panel-Schätzung (WIOD 2016)

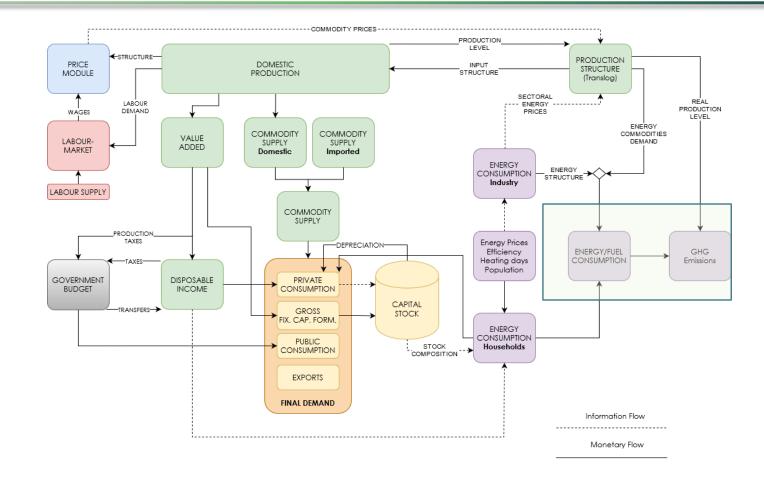


- Gütermarkt
- Endnachfrage
- Preissystem
- **Arbeitsmarkt**
 - Preis index für Stundenlöhne
 - Lohngleichungen
 - Lohnverhandlungen
 - Panel-Schätzung (WIOD16, EU-KLEMS)
 - Relevante Faktoren:
 - Arbeitsproduktivität im Sektor
 - Konsumer-Preis-Inflation
 - Arbeitslosenrate



Trans Fair-AT DYNK Modell – Energie, monetär

- Gütermarkt
- ▶ Endnachfrage
- Preissystem
- Arbeitsmarkt
- ► Energie (monetär)
 - Preise Energie
 - Exogen in Form von Importpreisen
 - Private Nachfrage
 - Bestand (Fahrzeuge, Wohnungen, Geräte)
 - **▶** Industie Nachfrage
 - ► Energiegüter (in realen Einheiten)



Transfair-AT DYNK Modell - Energie, physisch

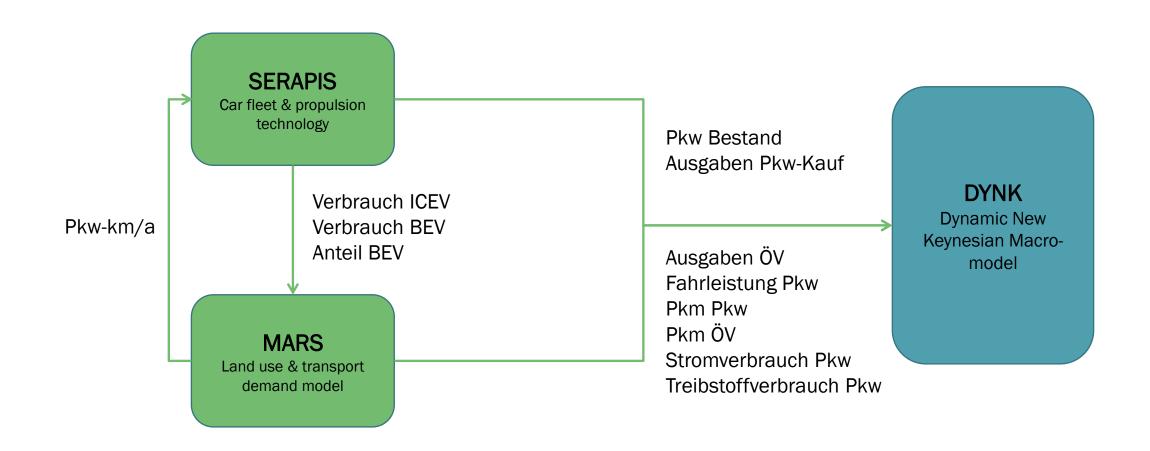
- Gütermarkt
- Endnachfrage
- Preissystem
- Arbeitsmarkt
- ► Energie (monetär)
- ► Energie (physisch)
 - ► Energieintensität
 - Endenergie (gem. Energiebilanz)
 - ► Energiebedingte & Prozess CO₂ Emissionen (gem. EB, PEFR, LER, UNFCCC)

MODELLKOPPELUNG

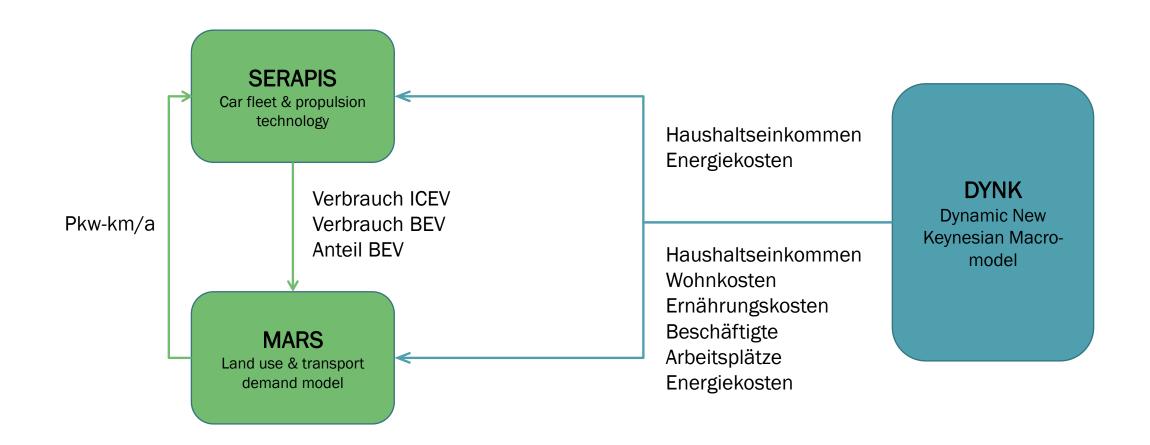
Organisation des iterativen Datenaustauschs zwischen den Modellen

TransFair-AT Modellkoppelung – Struktur und Ablauf

- Der Datenaustausch zwischen den Modellen der drei Sektoren erfolgt iterativ.
- Für jedes der Modelle wurde ein Datenoutputformular im csv- oder xlsx-Format definiert.
- ▶ Der Datenaustausch erfolgt über ein Repository auf Github.
- ► Für den Dateninput werden entsprechende Scripts vorbereitet.
- ▶ Die Konvergenz der Modellergebnisse wird überprüft, um die notwendige Anzahl der Iterationen zu bestimmen.



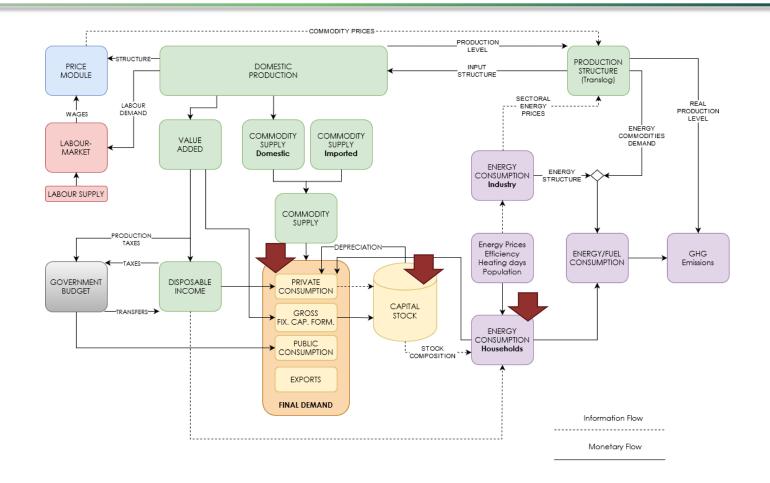
Trans Fair-AT Datenaustausch Mobilitätsmodelle => DYNK



TransFair-AT Datenaustausch DYNK => Mobilitätsmodelle

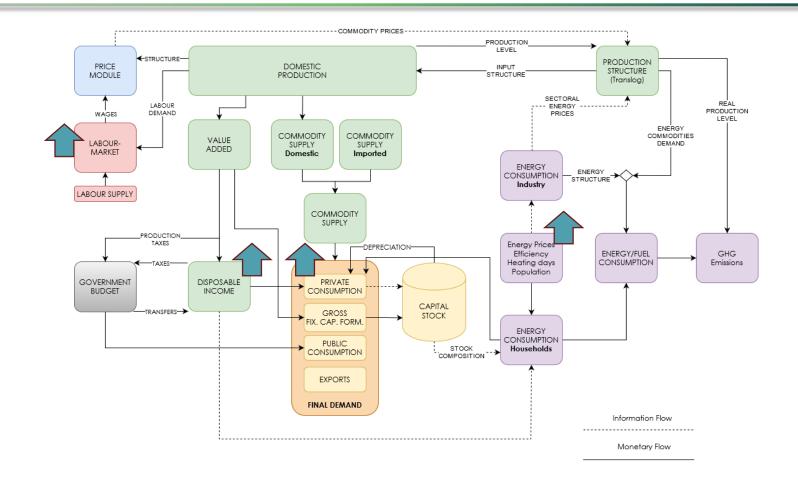
TransFair-AT Datenaustausch Beispielfile Mobilität

4	Α	В	С	D	E	F	G	Н	1	J	К
1	Szenario	base									
2											
3	orig_de ▼	model_id 🔻	Domain_id 🔻	Specification 🔻	Subregion	var_name_model	▼ year ▼	scen_id ▼	value_md 🔻	unit 💌	var_name_dy
4	oMD_001	MARS	Mobility demand	Pkm PT	Vienna	Personenkilometer OeV i Bundesland	2040	base	1.16E+10	km/a	
5	oMD_002	MARS	Mobility demand	Pkm PT	East	Personenkilometer OeV i Bundesland	2040	base	2.83E+09	km/a	
6	oMD_003	MARS	Mobility demand	Pkm PT	South	Personenkilometer OeV i Bundesland	2040	base	4.26E+09	km/a	
7	oMD_004	MARS	Mobility demand	Pkm PT	West	Personenkilometer OeV i Bundesland	2040	base	3.78E+09	km/a	
8	oMD_005	MARS	Mobility demand	Pkm PT	North	Personenkilometer OeV i Bundesland	2040	base	5.27E+09	km/a	
9	oMD_006	MARS	Mobility demand	Pkm car	Vienna	Personenkilometer MIV i Bundesland	2040	base	1.77E+10	km/a	
10	oMD_007	MARS	Mobility demand	Pkm car	East	Personenkilometer MIV i Bundesland	2040	base	3.15E+10	km/a	
11	oMD_008	MARS	Mobility demand	Pkm car	South	Personenkilometer MIV i Bundesland	2040	base	3.31E+10	km/a	
12	oMD_009	MARS	Mobility demand	Pkm car	West	Personenkilometer MIV i Bundesland	2040	base	1.65E+10	km/a	
13	oMD_010	MARS	Mobility demand	Pkm car	North	Personenkilometer MIV i Bundesland	2040	base	3.68E+10	km/a	
14	oMD_011	MARS	Mobility demand	Veh-km car	Vienna	Fahrleistung MIV i Bundesland	2040	base	1.43E+10	km/a	
15	oMD_012	MARS	Mobility demand	Veh-km car	East	Fahrleistung MIV i Bundesland	2040	base	2.57E+10	km/a	
16	oMD_013	MARS	Mobility demand	Veh-km car	South	Fahrleistung MIV i Bundesland	2040	base	2.76E+10	km/a	
17	oMD_014	MARS	Mobility demand	Veh-km car	West	Fahrleistung MIV i Bundesland	2040	base	1.38E+10	km/a	
18	oMD_015	MARS	Mobility demand	Veh-km car	North	Fahrleistung MIV i Bundesland	2040	base	3.03E+10	km/a	
19	oMD_016	MARS	Mobility expenses	Expenses PT	Vienna	Ausgaben OeV i Bundesland	2040	base	1.61E+09	Euro/a	
20	oMD_017	MARS	Mobility expenses	Expenses PT	East	Ausgaben OeV i Bundesland	2040	base	5.84E+08	Euro/a	
21	oMD_018	MARS	Mobility expenses	Expenses PT	South	Ausgaben OeV i Bundesland	2040	base	8.38E+08	Euro/a	
22	oMD_019	MARS	Mobility expenses	Expenses PT	West	Ausgaben OeV i Bundesland	2040	base	6.85E+08	Euro/a	
23	oMD_020	MARS	Mobility expenses	Expenses PT	North	Ausgaben OeV i Bundesland	2040	base	1.03E+09	Euro/a	
24	oMD_021	MARS	Energy demand	Petrol & Diesel	Vienna	Treibstoffverbrauch pro Jahr i Bundeslan	d 2040	base	3.75E+08	I/a	
25	oMD_022	MARS	Energy demand	Petrol & Diesel	East	Treibstoffverbrauch pro Jahr i Bundeslan	d 2040	base	5.73E+08	I/a	
00			- 1 1	n - 10 n - 1		- 1 - 1 1 1 - 1 1 - 1 1	1 0040		C 045.00	17	



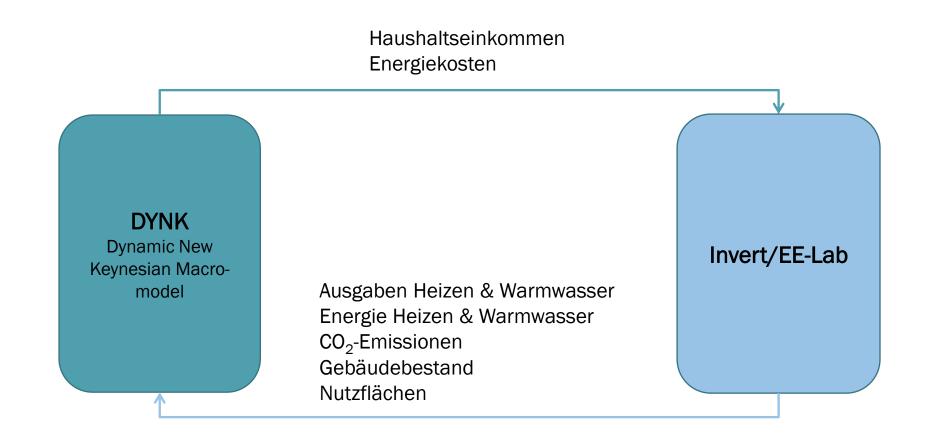
Trans Fair-AT "Linking points" Mobilität -> DYNK

- ► Mobilität -> DNYK
 - Pkw Bestand
 - Ausgaben Pkw-Kauf
 - Ausgaben ÖV
 - Fahrleistung Pkw
 - Pkm Pkw
 - ► Pkm ÖV
 - Stromverbrauch Pkw
 - Treibstoffverbrauch Pkw



Trans Fair-AT "Linking points" DYNK -> Mobilität

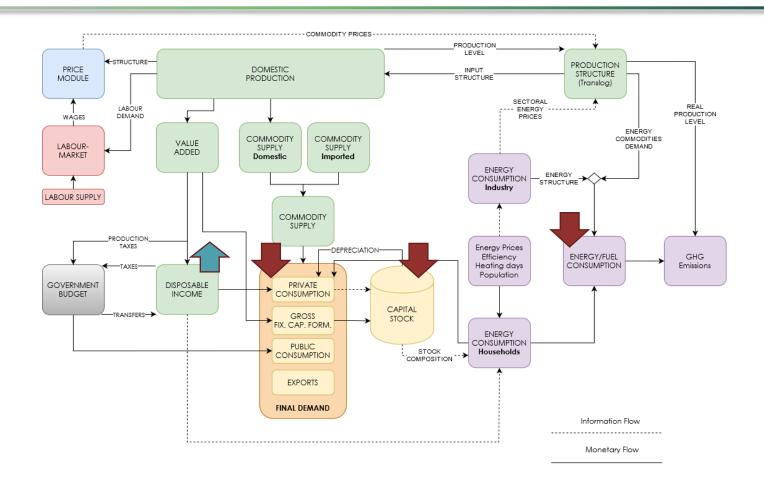
- ► DYNK -> Mobilität
 - ▶ Haushaltseinkommen
 - Wohnkosten
 - Ernährungskosten
 - Beschäftigte
 - Arbeitsplätze
 - Energiekosten



TransFair-AT Datenaustausch Invert/EE-Lab => DYNK

TransFair-AT Datenaustausch Beispielfile Gebäude

Δ	Α	В	С	D	Е	F	G	Н	1		J	K	L	М	N
1 1	nuts0_id 💌	subregion▼	scenario_ 🔻	source_id 🔻	scenario_ 🔻	sector_id 💌	sub_sectc ▼	househol(▼	data_typ	e ▼ unit	_id 🔻	end_use_id	▼ energy_ca ▼	year 🔻	value 🔻
2	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWl	n/yr	Space heating	ambient hea	2019	69.59472
3 /	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2020	72.243965
4	ΑT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2021	75.81531
5	AΤ	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2022	77.18924
6	ΑT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2023	78.50353
7	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2024	81.93178
8	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2025	85.36002
9 /	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2026	88.982056
10	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2027	92.60409
11 /	AT			Invert/EE-Lal	_		Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2028	96.01327
12	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2029	99.42244
13	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina			Space heating	ambient hea	2030	102.83161
14	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2031	105.16591
15	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2032	107.500206
16	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2033	109.8345
17	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2034	112.16879
18	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2035	114.50309
19	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GW	n/yr	Space heating	ambient hea	2036	117.05513
20	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2037	119.60717
21	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2038	121.72296
22	AT			Invert/EE-Lal			Multi-family	Rental_	FED (Fina	al er GW	n/yr	Space heating	ambient hea	2039	123.83876
23	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2040	125.95455
24	AT			Invert/EE-Lal			Multi-family	Rental_	FED (Fina		-	Space heating	ambient hea	2041	127.75592
25	AT	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GW	n/yr	Space heating	ambient hea	2042	129.5573
26	AT			Invert/EE-Lal			Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2043	131.35867
27		BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2044	133.16003
28	AT			Invert/EE-Lal			Multi-family		FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2045	134.96141
29	AT			Invert/EE-Lal					FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2046	137.27325
30 /	AΤ	BL 1 DICHTE	WEM_like_a	Invert/EE-Lal	Scenario_ve	Residential	Multi-family	Rental_	FED (Fina	al er GWI	n/yr	Space heating	ambient hea	2047	139.58511



Trans Fair-AT "Linking points" DYNK <-> Invert/EE-Lab

- ► DYNK -> Invert/EE-Lab
 - Haushaltseinkommen
 - Energiekosten
- ► Invert/EE-Lab -> DYNK
 - Ausgaben Heizen
 - Energie Heizen
 - Nutzfläche

Herzlichen Dank für Ihre Aufmerksamkeit!

Claudia Kettner (WIFO), Paul Pfaffenbichler, Olivia Gold (BOKU), Andreas Müller (e-think), Mark Sommer (WIFO)

Dieses Projekt wird vom Klima- und Energiefonds im Rahmen des Austrian Climate Research Programs (ACRP) gefördert und durchgeführt.

